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Abstract 

 

This study proposes an extended Diebold-Li dynamic Nelson-Siegel model with factors following 

regime-switching AR-GARCH processes to fit the term structure of CDS spreads. The proposed 

model is used to estimate the risk-based capital of a protection seller of CDS contracts. Using CDX 

North American Investment Grade Index and CDX North American High Yield Index data, we 

find the AR-GARCH process with regime switching to outperform all the other models. The risk-

based capital for a protection seller increases with the duration of the holding period. Moreover, 

the protection seller of CDS contracts on high-yield reference entity needs capital-at-risk at least 

twice the amount that is needed for similar CDS on the investment-grade reference entity. The 

observed high level of capital-at-risk is driven mainly by the high volatility period, since the low 

volatility period is characterised by low realised defaults and persistent decline in CDS spreads.  
 

JEL Classification: G12, G13, G17  

Keywords: CDS spreads, Term structure, Dynamic Nelson-Siegel, Regime-switching, Capital-at-
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1. Introduction  

The credit derivatives market experienced spectacular growth before the 2007-2009 

financial crisis. According to the Bank for International Settlements (BIS, 2008), in December 

2004, the notional principal of total outstanding credit derivative contracts was approximately $6 

trillion and subsequently reached $58 trillion in December 2007, and then declined following the 

2007-2009 financial crisis. Some argued that the undervaluation of credit derivatives risk by market 

participants was probably one of the causes of the 2007-2009 financial crisis.1  

Amongst the various credit derivatives, the Credit Default Swap (CDS) is the most popular. 

A CDS provides insurance against losses arising to creditors from a firm’s (the reference entity) 

default. In a CDS contract, the protection seller compensates the protection buyer for losses 

incurred from credit events triggered by downgrade, default, bankruptcy or restructuring of the 

reference entity. In return, the protection seller receives a periodic premium, called a CDS spread, 

from the protection buyer. The popularity of the CDS stems from the fact that it serves as a key 

signalling device for credit information on the deterioration or improvement of the credit quality 

of the reference entity. As such, CDS spreads are often used to estimate the intensity of default of 

the reference entities. In addition, the European Union’s banking regulation (Basel III) on capital 

requirements allows banks to reduce their required regulatory capital when they use CDS contracts 

to transfer credit risk to a counterparty. Insurance companies, banks and hedge funds use CDS as 

a hedging or risk-taking instrument. Indeed, CDS purchase may allow insurers to take additional 

risk through investment allocations. Likewise, CDS can also provide alternative investment 

opportunity to insurers in asset-liability management, which may possibly impact insurers’ risk 

profile and performance (Fung et al., 2012). Finally, CDS spreads are portrayed as a better proxy 

for credit risk than traditional credit spreads (e.g., Blanco et al., 2005; Longstaff et al., 2005; 

Alexander and Kaeck, 2008). 

Despite the importance of the CDS, its pricing remains a challenge. As mentioned by Fung 

et al. (2012), CDS buyers will experience losses when they purchase an overpriced CDS or if they 

do not have an information advantage over their counterparts when assessing the risk of default. 

Similarly, CDS sellers may suffer losses due to an undervaluation of premiums, and this will be 

                                                           
1 See Baer (2009) for a review. 
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more severe during economic turmoil periods. The above arguments therefore justify the need to 

have an appropriate model to adequately determine the term structure of CDS spreads.  

This paper proposes an extension of existing methods used to model the term structure of 

CDS spreads, and uses the proposed analytical framework to evaluate the risk-based capital of a 

seller of a CDS contract by accounting for high and low volatility regimes. The proposed model is 

an extension of the dynamic Nelson-Siegel model (DNS) proposed by Diebold and Li (2006) for 

bond yields. The Nelson-Siegel model assumes that the dynamics of CDS spreads incorporates 

three factors called level, slope and curvature of the curve (see for instance: Baer, 2009; Shaw et 

al., 2014). These latent or unobservable factors in these earlier works are estimated using 

autoregressive (AR) or vector autoregressive (VAR) processes with constant volatility over time.  

In the recent literature, CDS spreads become a preferred alternative to credit spread for 

credit risk modeling. According to Shaw et al. (2014), the similarity between CDS spreads and 

credit spreads makes it easy to apply credit spread modeling tools to construct a CDS spread curve. 

The use of CDS spreads however brings many advantages. First, CDS spreads are quoted, and 

hence do not require a specification for the risk-free interest rate curve (Longstaff et al., 2005; 

Ericsson et al., 2015). Second, unlike credit spreads, CDS spreads adjust more rapidly and with 

more precision to the evolution of credit risk (Ericsson et al., 2009). And finally, compared to 

corporate bonds, CDS contracts are simple and uniformly standardized (Han et al., 2017). Despite 

the apparent similarities between CDS spreads and credit spreads, Alexopoulou et al. (2009) found 

credit spreads to be close to CDS spreads in the long run, but not in the short term. In addition, a 

better model for credit spreads is not necessarily a better specification for CDS spreads; other 

factors should be considered in order to account for certain specificities of CDS. Naifar and Abid 

(2006) and Di Cesare and Guazzarotti (2010) found the theoretical determinants of credit spreads 

to explain more than 50% of CDS spreads.  

The above studies however fail when the credit spread is regime dependent. To overcome 

this difficulty, the regime-switching model was proposed in the early 2000s to model the yield 

curve and credit spreads. Two categories of regime-switching models have emerged: the affine 

term structure model (e.g. Dai and Singleton (2000) and Dai et al. (2007), among others) and the 

Nelson-Siegel term structure model (e.g., Bernadell et al. (2005), Nyholm (2007), Dionne et al. 

(2011), Xiang and Zhu (2013), Zhu and Rahman (2015), Pavlova et al. (2015), Levant and Ma 
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(2017), and Kobayashi (2017), among others). In recent years, a strand of empirical literature 

examining the determinants of CDS spreads has emerged. Alexander and Kaeck (2008) used a 

Markov-switching regime model to explain how the iTraxx Europe CDS Index behaves differently 

in volatile and tranquil periods. Baer (2009) implemented the Nelson-Siegel model to estimate the 

term structure of CDS spreads. The dynamics of the three factors are estimated using a vector 

autoregressive or an autoregressive process as in Diebold and Li (2006). Tang and Yan (2010) 

analyzed the interaction between market risk and credit risk using CDS spreads. They find that the 

average CDS spread drops with the GDP growth rate, but increases with the growth of GDP 

volatility. Chan and Marsden (2014) used a Markov-switching regime model to examine the 

determinants of the North American investment-grade and high-yield CDS indexes. They find 

evidence that the explanatory factors that explain credit spreads also exhibit regime-specific 

behaviour for volatile and tranquil markets. They suggest the need to consider regime dependent 

hedge ratios to manage credit risk exposure. Jang et al. (2016) added macroeconomic risk and firm 

idiosyncratic jump risk to the structural model to explain CDS spreads and show how spreads can 

depend on the current state of the economy. Kim et al. (2017), by extending the structural model 

to include the expected market risk premium as a proxy for the economic cycle, were able to explain 

68 percent of observed variations in CDS spreads; economic cycles turn out to be one key 

determinant of CDS spreads. Ma et al. (2018) examined changes in emerging market sovereign 

CDS spreads using market and economic variables. They find that these variables impact the spread 

more when the market is in a good state. Meanwhile, global variables, such as US stock index 

returns, in general have stronger influence in a bad state. All these findings suggest to use a regime-

switching model to better understand CDS spread variations.  

 Our work differs from these prior studies in several ways. First, unlike prior works such as 

Tang and Yan (2010), Jang et al. (2016), Kim et al. (2017), among many others, that examined the 

determinants of CDS spreads using linear regression models, we use a regime-switching model to 

capture the nonlinearity in CDS spreads in line with Alexander and Kaeck (2008), Baer (2009), 

Chan and Marsden (2014), Shaw et al. (2014) and Ma et al. (2018). Second, unlike Baer (2009) 

and Shaw et al. (2014), who implemented the Nelson-Siegel model to fit the term structure of CDS 

spreads using an AR or VAR process for the factors as suggested by Diebold and Li (2006) for 

bond yields, the factors in our model evolve according to a family of AR-GARCH processes. Third, 

unlike Alexander and Kaeck (2008), Chan and Marsden (2014) and Ma et al. (2018), who used a 
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linear regression and a Markov-switching model, we instead examine the term structure of North 

American investment-grade and high-yield CDS indexes in an extended Nelson-Siegel framework 

with regime-switching volatility. To our knowledge no existing work used the dynamic Nelson-

Siegel model to fit CDS spreads with regime-switching AR-GARCH model. Nor has any previous 

work examined the capital allocation decision of the protection seller of CDS contracts. 

As mentioned above, this paper proposes a pricing model to generate the term structure of 

CDS spreads. It contributes to the existing literature, first, by extending the Diebold-Li dynamic 

Nelson-Siegel (DNS) model assuming a family of regime-switching AR-GARCH processes for the 

Nelson-Siegel factors in order to capture the dynamics in the conditional mean and the (high and 

low) volatility regimes in the economy. Second, we use the proposed model to estimate the risk-

based capital of a protection seller of CDS contracts. Using data series for the CDX North American 

Investment Grade Index (CDXIG) and CDX North American High Yield Index (CDXHY), we 

forecast our series in-sample and out-of-sample and compare the performance of the different AR-

GARCH processes with and without a volatility-switching regime. Our main finding is that the 

regime-switching AR-GARCH process outperforms all the other processes considered (e.g., AR-

GARCH standard, AR-EGARCH, AR-GJR, AR, VAR). Consistent with Alexander and Kaeck 

(2008) and Chan and Marsden (2014), the term structure of CDS spreads is regime dependent. The 

capital-at-risk of the protection seller increases with the holding period, with its level being much 

higher under the high volatility regime, since the low volatility regime is characterized by low 

realised defaults and persistent decline in CDS spreads. Moreover, the protection seller of CDS 

contracts on high-yield reference entity has an average capital-at-risk level at least twice that of 

CDS contracts on a similar investment-grade reference entity. These findings have implications for 

regulators and credit derivatives portfolio managers, who must take into account bull and bear 

markets cycles when pricing credit derivatives contracts, as required by the current countercyclical 

risk-based capital requirements of Basel III regulation.  

 The rest of the paper is structured as follows. Section 2 discusses the Nelson-Siegel model 

and its extensions, and presents our extension of these earlier models. Section 3 presents the data 

and the empirical estimation results of the models and discusses the performance of each of them. 

Section 4 analyses the risk-based capital of a protection seller of CDS contracts. Section 5 

concludes. 
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2. The model 

In this section, we first start by introducing the Nelson and Siegel (1987) model and its 

extensions, and then propose our extended version of the model.  

2.1.  The Nelson-Siegel model (NS) and its extensions 

The basic Nelson-Siegel (NS) model is a three-factor model used to approximate the term 

structure of interest rates. The model is well accepted because of its performance compared to other 

approaches, especially for long-term forecasts (e.g. Fabozzi et al. (2005), Diebold and Li (2006), 

Hautsch and Ou (2008), Baer (2009), Christensen et al. (2009, 2011), Koopman et al. (2010), 

Annaert et al. (2013), Shaw et al. (2014), among many others). The model has the advantage of 

being continuous on maturities, there is no need for interpolation since the model generates 

automatically the rates for any given maturity.  

From historical data, the term structure of interest rates curve presents certain known 

characteristics: monotonic, hump shape and sometimes an S form. Nelson and Siegel (1987) 

proposed a parametric function flexible enough to describe all types of observed forms of the yield 

curve. The proposed function specifies the forward yield curve 𝑓𝑓(𝜏𝜏) as follows: 

𝑓𝑓(𝜏𝜏) =  𝛽𝛽0 + 𝛽𝛽1𝑒𝑒−𝛾𝛾𝛾𝛾  +  𝛽𝛽2𝛾𝛾𝜏𝜏𝑒𝑒−𝛾𝛾𝛾𝛾.              (1) 

The corresponding spot rate function at maturity 𝜏𝜏, 𝑟𝑟(𝜏𝜏), is defined by:  

𝑟𝑟(𝜏𝜏) = 𝛽𝛽0 +  𝛽𝛽1𝐹𝐹1(𝜏𝜏) +  𝛽𝛽2𝐹𝐹2(𝜏𝜏) ,                      (2) 

where   

𝐹𝐹1(𝜏𝜏) =  1−𝑒𝑒
−𝛾𝛾𝛾𝛾

𝛾𝛾𝛾𝛾
  ,                                     (3)  

and 

𝐹𝐹2(𝜏𝜏) =  𝐹𝐹1(𝜏𝜏) − 𝑒𝑒−𝛾𝛾𝛾𝛾.            (4) 

The latent or unobservable factors 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 represent, respectively, the level, the slope 

and the curvature of the yield curve (Diebold and Li, 2006). The loading factor associated with 𝛽𝛽0 

is 1, a constant that does not converge toward 0 at the limit, and hence 𝛽𝛽0 is perceived as a long-

term factor. 𝐹𝐹1 is a function decreasing quickly from 1 toward 0; 𝛽𝛽1 is thus considered as a short-

term factor. The function 𝐹𝐹2 goes from 0 (which is not the short term), and increases to a maximum, 
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and then decreases to 0 (which is not the long term); hence 𝛽𝛽2 represents a medium-term factor. 

The factor 𝛾𝛾 drives the decreasing rate of the exponential function. A low value of 𝛾𝛾 produces a 

slow decreasing trend and gives a better approximation for long-term rates, whereas a high 𝛾𝛾 

produces a rapid decreasing trend and gives better estimates for short-term maturity rates. 

Diebold and Li (2006) obtain a fixed 𝛾𝛾 = 0.0609 value that maximizes the function 𝐹𝐹2 for 

a maturity of 2.5 years in their case. Conditionally on 𝛾𝛾, the 𝛽𝛽0,𝛽𝛽1  and 𝛽𝛽2 are easy to estimate 

using ordinary least squares (OLS) estimation. Alternatively, the variables 𝛾𝛾, 𝛽𝛽0,𝛽𝛽1 and 𝛽𝛽2 can be 

estimated using the non-linear least squares estimation method. In the short-run, when the maturity 

is close to zero, the curvature factor tends toward zero and the forward and spot rates converge 

toward 𝛽𝛽0 + 𝛽𝛽1. In the long run, the slope and curvature factors converge toward 0, and hence the 

spot and forward rates converge toward the unique value 𝛽𝛽0. Figure 1 provides an illustration of 

the evolution of the three loadings (1,𝐹𝐹1,𝐹𝐹2) of the beta factors by maturity.  

Figure 1: Loadings of beta factors of Nelson-Siegel curve 

  
Note: This figure plots the factor loadings (1, 𝐹𝐹1, 𝐹𝐹2) in the three-factor model (equations 1 and 2). We use 𝛾𝛾= 0.3587 
(the value that maximizes F2). 

  

Diebold and Li (2006) extended this above earlier Nelson-Siegel model by allowing the 

latent factors to be dynamic, a so-called dynamic Nelson-Siegel model (DNS). This evolution of 

the yield curve over time is crucial for understanding its interaction with the economic cycle. The 

following equations represent the dynamic Nelson-Siegel model. 

 𝑟𝑟𝑡𝑡(𝜏𝜏𝑚𝑚) =  𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝐹𝐹1(𝜏𝜏𝑚𝑚) +  𝛽𝛽2𝑡𝑡𝐹𝐹2(𝜏𝜏𝑚𝑚) + 𝜀𝜀𝑡𝑡(𝜏𝜏𝑚𝑚),    (5) 
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where 𝑟𝑟𝑡𝑡(𝜏𝜏𝑚𝑚) represents the observed spot rate at periods t = 1, …, T for maturity 𝜏𝜏𝑚𝑚, for m = 1, 

…, n. In matrix form, we have:  

 𝑟𝑟𝑡𝑡(𝜏𝜏𝑚𝑚) = 𝐹𝐹𝛽𝛽𝑡𝑡 + 𝜀𝜀𝑡𝑡(𝜏𝜏𝑚𝑚),                      

with  𝛽𝛽𝑡𝑡 = (𝛽𝛽0𝑡𝑡 ,𝛽𝛽1𝑡𝑡 ,𝛽𝛽2𝑡𝑡)′ and  𝐹𝐹 = (1,𝐹𝐹1 ,𝐹𝐹2), where 𝐹𝐹1(𝜏𝜏𝑚𝑚) =  1−𝑒𝑒
−𝛾𝛾𝛾𝛾𝑚𝑚

𝛾𝛾𝛾𝛾𝑚𝑚
   and 𝐹𝐹2(𝜏𝜏𝑚𝑚) =

 𝐹𝐹1(𝜏𝜏𝑚𝑚) − 𝑒𝑒−𝛾𝛾𝛾𝛾𝑚𝑚 .  

(𝛽𝛽𝑡𝑡 − 𝜇𝜇) = 𝐴𝐴(𝛽𝛽𝑡𝑡−1 − 𝜇𝜇) +  𝑣𝑣𝑡𝑡.                    (6)  

The vector 𝛽𝛽𝑡𝑡 is characterized by a vector autoregressive of order 1, VAR (1) (or an autoregressive 

process of order 1, AR(1), a special case of the VAR(1) process when the cross-coefficients in the 

matrix 𝐴𝐴 are null), and its estimates are used to determine the rates in equation (5). The parameters 

𝐴𝐴 and 𝜇𝜇 represent, respectively, the matrix and the vector of the model coefficients to be estimated. 

The error terms 𝑣𝑣𝑡𝑡 and 𝜀𝜀𝑡𝑡 follow the following iid vector distribution: 

�
𝑣𝑣𝑡𝑡
𝜀𝜀𝑡𝑡� ~𝑖𝑖.𝑖𝑖.𝑑𝑑.𝑁𝑁 ��0

0� , �𝑄𝑄 0
0 𝐻𝐻��, 

with Q a non-diagonal matrix allowing correlation among shocks in beta factors, and H a diagonal 

matrix implying zero-correlation of the rate deviation for different maturities with respect to the 

yield curve.  

Diebold and Li (2006) estimated this model in two steps. First, they apply the OLS method 

to equation (5) to estimate the vector βt, by setting γ = 0.0609. Then, they estimate the 

parameters of equation (6) using the vector βt estimated from equation (5). An alternative one-

step approach consists of applying the Kalman filter. This technique provides estimates for the 

maximum likelihood and optimal filtered and smoothed estimates for the underlying factors 

(Diebold et al., 2006), and gives more efficient estimates. In our case, we use this dynamic Nelson-

Siegel model to fit the CDS spreads instead of the interest rates and the parameters γ, β0, 

β1 and β2 are estimated simultaneously using the non-linear least squares method described in 

the next section.  

2.2.  The proposed model and its estimation method 

We propose a modification to the above Diebold-Li dynamic Nelson-Siegel model. 

Contrary to the AR(1) process proposed by these authors to understand the dynamics of the latent 
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factors 𝛽𝛽𝑖𝑖 , 𝑖𝑖 = 0, 1, 2, we let these factors evolve according to a family of AR-GARCH processes 

(standard AR-GARCH, AR-EGARCH and AR-GJR) in order to capture the dynamics in the 

conditional mean and the conditional volatility of CDS spreads. We also use a regime-switching 

AR-GARCH process to take into account periods of high volatility and low volatility in CDS 

spreads. The proposed model is formulated as follows:  

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝜏𝜏𝑚𝑚) =  𝛽𝛽0𝑡𝑡 + 𝛽𝛽1𝑡𝑡𝐹𝐹1𝑡𝑡(𝜏𝜏𝑚𝑚) + 𝛽𝛽2𝑡𝑡𝐹𝐹2𝑡𝑡(𝜏𝜏𝑚𝑚) + 𝜂𝜂𝑡𝑡(𝜏𝜏𝑚𝑚),     (7) 

where 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝜏𝜏𝑚𝑚) represents the observed CDS spread at time t = 1,….,T, for maturity 𝜏𝜏𝑚𝑚, m = 1,…., 

n. We can rewrite equation (7) in a vector form as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝜏𝜏𝑚𝑚) = 𝐹𝐹𝑡𝑡𝛽𝛽𝑡𝑡 + 𝜂𝜂𝑡𝑡(𝜏𝜏𝑚𝑚) ,                                                                                                                   

where 𝛽𝛽𝑡𝑡 = (𝛽𝛽0𝑡𝑡 ,𝛽𝛽1𝑡𝑡 ,𝛽𝛽2𝑡𝑡)′, 𝐹𝐹𝑡𝑡 = (1,𝐹𝐹1𝑡𝑡  ,𝐹𝐹2𝑡𝑡), 𝜂𝜂𝑡𝑡 ~𝑖𝑖.𝑖𝑖.𝑑𝑑. 𝑁𝑁 (0,𝜎𝜎𝑡𝑡2), 𝐹𝐹1𝑡𝑡(𝜏𝜏𝑚𝑚) = 1−𝑒𝑒−𝛾𝛾𝑡𝑡𝛾𝛾𝑚𝑚

𝛾𝛾𝑡𝑡𝛾𝛾𝑚𝑚
,     𝐹𝐹2𝑡𝑡(𝜏𝜏𝑚𝑚) =

 𝐹𝐹1𝑡𝑡(𝜏𝜏𝑚𝑚) − 𝑒𝑒−𝛾𝛾𝑡𝑡𝛾𝛾𝑚𝑚 and 𝛾𝛾 drives the decay rate of the exponential function.  

The dynamics of {𝛾𝛾𝑡𝑡 and 𝛽𝛽𝑖𝑖𝑡𝑡 with 𝑖𝑖 = 0, 1, 2, and t = 1, 2, …, T} are captured through a family of 

AR(p)-GARCH(1,1) processes described as follows. 

Let us consider (𝑦𝑦𝑖𝑖,𝑡𝑡) = ( 𝑦𝑦0,𝑡𝑡 ,𝑦𝑦1,𝑡𝑡 ,𝑦𝑦2,𝑡𝑡 ,𝑦𝑦3,𝑡𝑡)′ with 𝑦𝑦0,𝑡𝑡 = 𝛽𝛽0𝑡𝑡,  𝑦𝑦1,𝑡𝑡 = 𝛽𝛽1𝑡𝑡,  𝑦𝑦2,𝑡𝑡 = 𝛽𝛽2𝑡𝑡, 𝑦𝑦3,𝑡𝑡 = 𝛾𝛾𝑡𝑡, 

such that, for 𝑖𝑖 = 0 , 1, 2, 3, we have: 

𝑦𝑦𝑖𝑖,𝑡𝑡 =  𝜇𝜇𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡,                         (8) 

where 𝜀𝜀𝑖𝑖,𝑡𝑡 = 𝜎𝜎𝑖𝑖,𝑡𝑡𝑒𝑒𝑖𝑖,𝑡𝑡,            

𝜇𝜇𝑖𝑖,𝑡𝑡 = 𝜙𝜙0 + ∑ 𝜙𝜙𝑗𝑗𝑦𝑦𝑖𝑖,𝑡𝑡−𝑗𝑗
𝑝𝑝
𝑗𝑗=1 ,   AR(p)                   (9) 

𝜎𝜎𝑖𝑖,𝑡𝑡2 = 𝑎𝑎0𝑖𝑖 + 𝑎𝑎1𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡−12 + 𝑏𝑏1𝑖𝑖𝜎𝜎𝑖𝑖,𝑡𝑡−12 ,    GARCH(1,1)      (10) 

or 

log�𝜎𝜎𝑖𝑖,𝑡𝑡2 � = 𝑎𝑎0𝑖𝑖 + 𝑎𝑎1𝑖𝑖 �
�𝜀𝜀𝑖𝑖,𝑡𝑡−1�
𝜎𝜎𝑖𝑖,𝑡𝑡−1

− �2
𝜋𝜋
� + 𝑏𝑏1𝑖𝑖 log�𝜎𝜎𝑖𝑖,𝑡𝑡−12 � + 𝛿𝛿𝑖𝑖

𝜀𝜀𝑖𝑖,𝑡𝑡−1
𝜎𝜎𝑖𝑖,𝑡𝑡−1

,  EGARCH (11) 

or 

𝜎𝜎𝑖𝑖,𝑡𝑡2 = 𝑎𝑎0𝑖𝑖 + 𝑎𝑎1𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡−12 + 𝑏𝑏1𝑖𝑖𝜎𝜎𝑖𝑖,𝑡𝑡−12 + 𝛿𝛿𝑖𝑖𝐼𝐼�𝜀𝜀𝑖𝑖,𝑡𝑡−1  < 0�𝜀𝜀𝑖𝑖,𝑡𝑡−12 .  GJR   (12) 

The regime-switching AR-GARCH process is defined as follows: 
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𝑦𝑦𝑖𝑖,𝑡𝑡𝑠𝑠 =  𝜇𝜇𝑖𝑖,𝑡𝑡𝑠𝑠 + 𝜀𝜀𝑖𝑖,𝑡𝑡𝑠𝑠 ,                        (13)                                                                                         

where 𝜀𝜀𝑖𝑖,𝑡𝑡𝑠𝑠 = 𝜎𝜎𝑖𝑖,𝑡𝑡𝑠𝑠 𝑒𝑒𝑖𝑖,𝑡𝑡𝑠𝑠 ,            

𝜇𝜇𝑖𝑖,𝑡𝑡𝑠𝑠 = 𝜙𝜙0𝑠𝑠 + ∑ 𝜙𝜙𝑗𝑗𝑠𝑠𝑦𝑦𝑖𝑖,𝑡𝑡−𝑗𝑗𝑠𝑠𝑝𝑝
𝑗𝑗=1 ,              AR(P)                  (14) 

𝜎𝜎𝑖𝑖,𝑡𝑡𝑠𝑠2 = 𝑎𝑎0𝑖𝑖𝑠𝑠 + 𝑎𝑎1𝑖𝑖𝑠𝑠 𝜀𝜀𝑖𝑖,𝑡𝑡−1𝑠𝑠2 + 𝑏𝑏1𝑖𝑖𝑠𝑠 𝜎𝜎𝑖𝑖,𝑡𝑡−1𝑠𝑠2 ,   GARCH                (15) 

where s =1, 2 indicates the regime. Regime 1 corresponds to a high volatility regime, while 

regime 2 is considered a low volatility regime.  

In the above equations, 𝜇𝜇𝑖𝑖,𝑡𝑡 and 𝜎𝜎𝑖𝑖,𝑡𝑡2  represent, respectively, the conditional mean and the 

conditional variance of the factors 𝛾𝛾𝑡𝑡 and 𝛽𝛽𝑖𝑖𝑡𝑡 (𝑖𝑖 = 0 , 1, 2). The error term 𝑒𝑒𝑖𝑖,𝑡𝑡 follows an iid 

process: 𝑒𝑒𝑖𝑖,𝑡𝑡 ~𝑖𝑖𝑖𝑖𝑑𝑑 𝑁𝑁(0,1) or 𝑒𝑒𝑖𝑖,𝑡𝑡 ~𝑖𝑖𝑖𝑖𝑑𝑑 𝑡𝑡(ν𝑖𝑖), with 𝜈𝜈𝑖𝑖 the number of degrees of freedom. In the 

conditional mean, {𝜙𝜙𝑗𝑗 , 𝑗𝑗 = 0, 1, … , 𝑝𝑝} are the coefficients of the AR(p) process; the process is 

stationary if the roots of the polynomial 𝜑𝜑(𝑧𝑧) = 𝑧𝑧𝑝𝑝 − 𝜙𝜙1𝑧𝑧𝑝𝑝−1 − ⋯− 𝜙𝜙𝑝𝑝−1𝑧𝑧1 − 𝜙𝜙𝑝𝑝 all lie inside 

the unit circle. In the conditional variance, we have the following conditions: 𝑎𝑎0𝑖𝑖 ≥ 0, 𝑎𝑎1𝑖𝑖 ≥ 0, 

𝑏𝑏𝑖𝑖 ≥ 0 (sufficient conditions to ensure positive conditional variance) and 𝑎𝑎1𝑖𝑖 + 𝑏𝑏1𝑖𝑖 < 1 (condition 

of stationarity of GARCH and EGARCH process), 𝑎𝑎1𝑖𝑖 + 𝑏𝑏1𝑖𝑖  + 1
2
𝛿𝛿𝑖𝑖  < 1 (condition of stationarity 

of GJR process). 𝛿𝛿𝑖𝑖 captures the asymmetry in the GARCH process by allowing good news and 

bad news to have different impacts on the volatility of CDS spreads. 

To estimate the model, we proceed as follows. First, we fit the coefficients 𝛽𝛽𝑖𝑖𝑡𝑡 and 𝛾𝛾𝑡𝑡 of 

equation (7) using historical data on CDS spreads using the non-linear least squares estimation 

method. With this estimation approach, the unknown parameters (β0, β1, β2, γ) are estimated by 

minimizing the sum of the squared errors: ∑(𝛽𝛽0𝑡𝑡 +  𝛽𝛽1𝑡𝑡𝐹𝐹1𝑡𝑡(𝜏𝜏𝑚𝑚) +  𝛽𝛽2𝑡𝑡𝐹𝐹2𝑡𝑡(𝜏𝜏𝑚𝑚) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡(𝜏𝜏𝑚𝑚))2.2  

Second, we use these estimates to obtain the coefficients of the AR(p)-GARCH(1,1) 

process given by equations (8 to 15) using the maximum likelihood estimation method. We then 

return to equation (8) or (13) to find the value of the gamma and beta factors and replace them in 

equation (7) to estimate the CDS spreads. To determine the number of delays p in the AR(p) 

                                                           
2 Gauthier and Simonato (2012) used the same method. But, in contrast to us, they suggested a naive algorithm to 
design a robust optimization by choosing the starting point by simulation to avoid local optima. For robustness check, 
we try their approach and our unreported results do not change. Fortunately, our optimization converges toward the 
global optimum regardless of the starting point of the optimization. These results are available from the authors upon 
request. 
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process, we start with a relatively large value of p, we estimate the model iteratively until the pth 

lag becomes statistically significant.  

3. Empirical analysis 

3.1. Data and descriptive statistics 

We use end-of-day mid quotes of CDX North American Investment Grade Index (CDXIG) 

and CDX North American High Yield Index (CDXHY) data obtained from the Thomson Reuters 

Eikon database. The CDXIG index is composed of 125 investment-grade entities located in North 

America, each with an equal weighting of 0.8%. The CDXHY index is an equally-weighted index 

consisting of 100 high-yield entities that provide a broad exposure to high-yield credits in the North 

American region. We use data over the period September 27, 2013 to September 27, 2018 for the 

CDXIG series for maturities of 1, 2, 3, 5, 7 and 10 years, whereas the CDXHY series are available 

for maturities of 3, 5, 7 and 10 years. 

The graphs of Figure 2 show the evolution over time of the CDXIG index (left-hand-side 

graph) and CDXHY index (right-hand-side graph). Following the approach of Fama (2006),3 we 

identify two regimes in the trend of each index. In the first regime, the two indexes increase steadily 

and reach a peak (on June 27, 2016 for the CDXIG and February 11, 2016 for the CDXHY), while 

in the second regime, the spreads move downward. There is an overall co-movement among the 

spreads regardless of the contract maturity.  

  

                                                           
3 Fama (2006) acknowledged that in regime switching models, the number of parameters to be estimated grows rapidly 
with the number of regimes. As a result, two or at most three regimes are allowed. To avoid having too many parameters 
to estimate, we follow his approach and identify the break point in our data in order to have two regimes.  
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Figure 2: Evolution of daily CDS spreads 

   
Note: These graphs show the dynamics of the CDXIG index (left graph) and CDXHY index (right graph) over time. 
The sample consists of daily spreads data from September, 27 2013 to September, 27 2018 for maturities of 1, 2, 3, 5, 
7 and 10 years for the CDXIG and 3, 5, 7 and 10 years for the CDXHY. 
 

Table 1 presents the summary descriptive statistics of the CDXIG index for the whole 

sample under the two regimes identified in Figure 2. As expected, the spreads increase with the 

maturity of the contract. The overall sample average spread for a 1-year contract is 0.37%, while 

the average value for a 10-year contract is 1.10%. The volatilities of the spreads are low in general 

and remain more or less similar across maturities (between 0.08% and 0.12%), but with relatively 

lower values for short-term maturities. Furthermore, as indicated by the coefficients of 

autocorrelation, the long-term spreads tend to be less persistent. Similar trends are observed over 

the sub-periods or regimes, with regime 1 (September 27, 2013 - June 27, 2016) exhibiting higher 

spread levels than regime 2 (June 28, 2016 - September 27, 2018). Indeed, compared to regime 2, 

in regime 1, spreads are more volatile, more persistent and the index is higher for all maturities. 

We could therefore characterize the first regime as a high volatility regime and the second one as 

a low volatility regime. Similar behaviours are observed with the unreported4 CDXHY index 

statistics, with the difference that the level of the CDXHY index is higher than the CDXIG index. 

In the remaining descriptive analysis below, we only consider the CDXIG index. 

  

                                                           
4 These results for the CDXHY are not presented but are available from the authors upon request. 
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Table 1: Summary statistics of CDS spreads (in %) 

Maturity (years)  Mean St. dev. Min Max ρ(1) ρ(21) ρ(200) 
Single regime: September 27, 2013 - September 27, 2018 

1  0.3667 0.0838 0.2170 0.6433 0.9835 0.8471 0.2349 
2  0.3663 0.0841 0.2161 0.6434 0.9836 0.8474 0.2359 
3  0.3771 0.1163 0.2156 0.9437 0.9903 0.8261 0.0806 
5  0.6759 0.1175 0.4532 1.2450 0.9889 0.8104 0.0473 
7  0.9186 0.1153 0.6641 1.4400 0.9874 0.7994 0.0521 
10   1.1042 0.1044 0.8530 1.5700 0.9859 0.7806 -0.0006 

Regime 1: September 27, 2013 - June 27, 2016 
1  0.4079 0.0752 0.2797 0.6433 0.9680 0.7492 0.0283 
2  0.4079 0.0753 0.2796 0.6434 0.9681 0.7494 0.0284 
3  0.4312 0.1264 0.2800 0.9437 0.9875 0.7682 -0.0233 
5  0.7210 0.1281 0.5499 1.2450 0.9867 0.7611 -0.1049 
7  0.9515 0.1225 0.7600 1.4400 0.9845 0.7395 -0.1426 
10  1.1343 0.1131 0.9400 1.5700 0.9824 0.7217 -0.1584 

Regime 2: June 28, 2016 - September 27, 2018 
1  0.3202 0.0671 0.2170 0.5833 0.9695 0.7265 -0.1070 
2  0.3193 0.0671 0.2161 0.5834 0.9694 0.7253 -0.1053 
3  0.3161 0.0610 0.2156 0.5837 0.9621 0.6875 -0.1168 
5  0.6249 0.0772 0.4532 0.8502 0.9770 0.7872 -0.1052 
7  0.8814 0.0936 0.6641 1.1010 0.9818 0.8300 -0.0568 
10  1.0703 0.0813 0.8530 1.2693 0.9809 0.8087 -0.0832 

Note: This table presents the summary statistics of the daily CDXIG index expressed as a percentage. ρ(k) is the 
autocorrelation coefficient at lag k days.  

 

Table 2 presents the correlations among CDS spreads of different maturities. Although the 

correlation coefficients are high among all spreads, short-term spreads are relatively less correlated 

with long-term spreads. For example, the correlations between the 1-year CDS spread and the 2, 3, 

5, 7 and 10-years CDS spreads are respectively, 0.99, 0.86, 0.84, 0.79 and 0.78. The correlation 

coefficients vary from 78% to 99%. These high correlations observed among CDS spreads explain 

the parallel co-movements of the spreads and the similar dynamic changes in their term structure 

as showed in Figure 2 above. 
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Table 2: Correlations among CDS spreads  

  CDS1Y CDS2Y CDS3Y CDS5Y CDS7Y CDS10Y 
CDS1Y 1      

CDS2Y 0.9999*** 1     

CDS3Y 0.8674*** 0.8677*** 1    

CDS5Y 0.8411*** 0.8411*** 0.9654*** 1   

CDS7Y 0.7935*** 0.7932*** 0.8964*** 0.9739*** 1  

CDS10Y 0.7859*** 0.7854*** 0.8843*** 0.9674*** 0.9829*** 1 
Note: This table presents the correlation matrix between CDXIG index of different maturities. CDS1Y, CDS2Y, 
CDS3Y, CDS5Y, CDS7Y, CDS10Y are spreads of 1, 2, 3, 5, 7 and 10 years maturity, respectively. *** significant at 
1% level.  
 

Table 3 summarizes the descriptive statistics of the beta and gamma factors. The average 

long-term spread, β0, is 1.73%. The average slope of the curve, β1, is -1.02%. The average 

curvature β2 is -2.86%. The average value for γ is 0.637. The distributions of β1 and γ are skewed 

and have excess kurtosis (kurtosis ˃ 3), and hence we reject the normal distribution assumption for 

these two factors. The autocorrelation function shows that β1 is the most persistent followed 

respectively by γ, β2 and β0. The augmented Dickey-Fuller (ADF) unit root test statistics show 

that all the factors are stationary at the 1% or 5% significance level. 

Table 3: Summary statistics of estimated beta and gamma factors 

Factor Mean St. dev. Min Max Skewness Kurtosis ρ(1) ρ(21) ρ(180) 
 

ADF 
Level (𝛽𝛽0) 1.727 0.089 1.459 1.965 -0.318 2.985 0.972 0.619 -0.063 0.000*** 
Slope (𝛽𝛽1) -1.019 0.102 -1.269 -0.516 0.556 4.276 0.973 0.647 0.117 0.002*** 

Curvature (𝛽𝛽2) -2.860 0.158 -3.000 -2.468 0.709 2.287 0.986 0.760 0.005 0.048** 
𝛾𝛾 0.637 0.088 0.541 1.124 3.535 17.172 0.987 0.648 0.009 0.018** 

Note: This table provides descriptive statistics of the beta and gamma factors estimated using the dynamic Nielson-
Siegel model (equation 5). ρ(k) is the autocorrelation coefficient at lag k days. The last column contains the p-value of 
the Augmented Dickey-Fuller (ADF) unit root test statistics. *** and ** indicate stationarity at 1% and 5%, 
respectively. Sample period: CDXIG index data from September 27, 2013 to September 27, 2018. 

 

Table 4 presents the correlations among the beta and gamma factors. The absolute value of 

correlations among factors are generally less than 0.50, except the correlation between 𝛽𝛽2 and 𝛽𝛽0 

which is the highest in absolute terms (-0.66). 

  



16 
 

Table 4: Correlations among the beta and gamma factors  

  𝛽𝛽0 𝛽𝛽1 𝛽𝛽2 𝛾𝛾   
𝛽𝛽0 1.0000      
𝛽𝛽1 -0.3648*** 1.0000     
𝛽𝛽2 -0.6639*** 0.4824*** 1.0000    
𝛾𝛾 0.2091*** 0.4954*** -0.2615*** 1.0000   

Note: This table presents the correlations among the beta and 𝛾𝛾 factors. *** significant at 1% level. 
 

Figure 3 presents the temporal evolution of the beta and gamma factors. These factors are 

estimated using equation (5). Similar to the CDS spreads, the factors seem to be regime dependant. 

This confirms the fact that the beta factors capture the dynamics of CDS spreads. As shown by the 

ADF test statistics in Table 3 above, all factors are stationary. 

Figure 3: Dynamics of the beta and gamma factors 

 
Note: This figure presents the time trend of the CDS spreads’ factors: level (β0), slope (β1), curvature (β2) and 𝛾𝛾. 
 

Figure 4 compares the observed actual CDS spreads to the Nelson-Siegel model fit at 

specific dates. The estimated CDS spreads are very close to the actual observations. The difference 

between the two series is the measurement errors in equation (5). This result shows that we can use 

the beta factors calibrated on historical CDS spreads to bootstrap or forecast CDS spreads curve. 

  



17 
 

Figure 4: Actual and fitted CDS spreads curve at selected dates 

 
Note: This figure presents the actual and fitted CDS spreads curve at selected dates using the estimated beta factors in 
the Nelson-Siegel model. The chosen dates are: the beginning of the sample period (September 27, 2013), around the 
regime switch (June 27 and 28, 2016) and end of sample period (September 27, 2018). 
 

3.2. Estimation results of the single regime AR-GARCH  

Here we examine the estimates of the beta and gamma factors using different specifications 

of the AR-GARCH process (equations 7 to 12) over the entire sample period. We recall that the 

factor 𝛽𝛽0 is linked to the empirical long-term spread (10 years), 𝛽𝛽1 measures the slope of the term 

structure of CDS spreads, 𝛽𝛽2 captures the degree of the curvature of the spreads curve and 𝛾𝛾 drives 

the decreasing rate of the exponential function in equations (3) and (4). To explain the dynamics 

of the beta and gamma factors, we have extended the DNS model by using an autoregressive (AR) 

process for the conditional mean and different GARCH specifications to capture the dynamic of 

the conditional variance with normal distribution (indexed by N) and Student’s t-distribution 

(indexed by t) for the innovations. The dynamics of the beta factors (𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2) and 𝛾𝛾 are captured 

by an AR(1) process. In other words, the variations of these factors are influenced by their values 

of the previous days.  

Table 5 presents the estimation results. In all the models studied, the parameters of the 

conditional mean are significant at the 1% significance level. With regard to the conditional 

variance, the choice of a GARCH process seems to be justified. In fact, the conditional variance 

estimates show that almost all the parameters are significant at the 1% level, except for the 
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coefficient 𝑎𝑎0 of 𝛽𝛽2 in the AR-GARCH-t and AR-GJR-t processes that are not significant. The 

strong assumption of constant variance in the dynamic Nelson-Siegel model does not hold here. 

The relatively low value and statistically significant number of degrees of freedom (𝜈𝜈) of the 

Student’s t-distribution observed for the factors show that the distribution has thicker tails than the 

normal distribution. This confirms the excess kurtosis obtained for 𝛽𝛽1 and 𝛾𝛾 and reported in Table 

3 above. In addition, the high significance of the leverage parameter (𝛿𝛿) for 𝛽𝛽1 and 𝛽𝛽2 in the 

EGARCH and GJR models stresses the presence of asymmetry in the volatility. In other words, 

good news and bad news have different predictability for future volatility of CDS spreads. 

Table 5: Estimates of the AR-GARCH models 

 𝜙𝜙0 𝜙𝜙1 𝑎𝑎0 𝑎𝑎1 𝑏𝑏1 𝛿𝛿 𝜈𝜈 
𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 (𝜷𝜷𝟎𝟎𝟎𝟎) 

AR-GARCH-N 0.0297 0.9824 0.0001 0.1844 0.6621   
 (0.001)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***   
AR-GARCH-t 0.0171 0.9899 0.00005 0.2946 0.7054  2.9023 

 (0.009)*** (0.000)*** (0.001)*** (0.000)*** (0.000)***  (0.000)*** 
AR-EGARCH-N 0.0231 0.9865 -0.7647 0.2335 0.9009 0.1602  
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***  
AR-EGARCH-t 0.0173 0.9899 -0.6969 0.3574 0.9097 0.1563 2.965 

 (0.007)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
AR-GJR-N 0.0293 0.9829 0.00004 0.2832 0.7621 -0.2596  
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***  
AR-GJR-t 0.0175 0.9898 0.00004 0.4185 0.7470 -0.3310 2.962 

 (0.007)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.001)*** (0.000)*** 
𝑺𝑺𝑳𝑳𝑺𝑺𝑺𝑺𝑳𝑳 (𝜷𝜷𝟏𝟏𝟎𝟎) 

AR-GARCH-N -0.0290 0.9713 0.0001 0.3705 0.6164   
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***   
AR-GARCH-t -0.0017 0.9984 0.00002 0.4155 0.5845  2.1702 

 (0.132) (0.000)*** (0.008)*** (0.012)** (0.000)***  (0.000)*** 
AR-EGARCH-N -0.0331 0.9687 -0.7502 0.4120 0.8913 -0.1314  
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***  
AR-EGARCH-t -0.0015 0.9986 -0.3441 0.9999 0.9571 -0.0443 2.017 

 (0.179) (0.000)*** (0.000)*** (0.011)** (0.000)*** (0.198) (0.000)*** 
AR-GJR-N -0.0285 0.9723 0.0000 0.1211 0.6823 0.3933  
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***  
AR-GJR-t -0.0017 0.9984 0.0000 0.3808 0.5884 0.0616 2.169 
  (0.136) (0.000)*** (0.009)*** (0.015)** (0.000)*** (0.241) (0.000)*** 

𝑪𝑪𝑪𝑪𝑪𝑪𝑳𝑳𝑪𝑪𝟎𝟎𝑪𝑪𝑪𝑪𝑳𝑳 (𝜷𝜷𝟐𝟐𝟎𝟎) 
AR-GARCH-N -0.0085 0.9968 0.0001 0.3925 0.6075   
 (0.274) (0.000)*** (0.000)*** (0.000)*** (0.000)***   
AR-GARCH-t -0.0001 0.9999 0.0000 0.4807 0.5193  2.1030 

 (0.456) (0.000)*** (0.186) (0.000)*** (0.000)***  (0.000)*** 
AR-EGARCH-N 0.0000 0.9999 -1.0552 0.4158 0.8358 -0.1274  
 (0.497) (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***  
AR-EGARCH-t 0.0000 0.9999 -0.2776 0.9999 0.9803 -0.8962 2.018 

 (0.483) (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
AR-GJR-N -0.0059 0.9977 0.0001 0.1686 0.6258 0.4112  
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 (0.294) (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***  
AR-GJR-t 0.0000 0.9999 0.0000 0.5033 0.5206 -0.0479 2.103 

 (0.500) (0.000)*** (0.186) (0.000)*** (0.000)*** (0.253) (0.000)*** 
𝜸𝜸𝟎𝟎 

AR-GARCH-N -0.0003 0.9999 0.00003 0.4818 0.5182   
 (0.417) (0.000)*** (0.000)*** (0.000)*** (0.000)***   
AR-GARCH-t 0.0002 0.9996 0.0000 0.4322 0.5678  2.2012 

 (0.407) (0.000)*** (0.010)*** (0.001)*** (0.000)***  (0.000)*** 
AR-EGARCH-N -0.0007 0.9999 -1.1665 0.5469 0.8513 -0.0581  
 (0.305) (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***  
AR-EGARCH-t 0.0000 0.9999 -0.4226 0.9999 0.9555 0.0621 2.017 

 (0.485) (0.000)*** (0.000)*** (0.003)*** (0.000)*** (0.116) (0.000)*** 
AR-GJR-N -0.0003 0.9999 0.0000 0.4936 0.5177 -0.0227  
 (0.421) (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.333)  
AR-GJR-t 0.0002 0.9996 0.0000 0.5381 0.5768 -0.2297 2.207 
  (0.396) (0.000)*** (0.010)*** (0.001)*** (0.000)*** (0.012)** (0.000)*** 

Note: This table presents the results of the estimates of the beta and gamma factors without regime switching. The 
estimation of the parameters is performed by the maximum likelihood method. We model each error variance with a 
normal (N) and a Student (t) distribution. The conditional mean is 𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝜙𝜙0 + 𝜙𝜙1𝑦𝑦𝑖𝑖,𝑡𝑡−1 + 𝜀𝜀𝑖𝑖,𝑡𝑡, where 𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝑖𝑖𝑡𝑡 , 𝑖𝑖 =
0,1,2 , 𝑦𝑦3,𝑡𝑡 =  𝛾𝛾𝑡𝑡 and 𝜀𝜀𝑖𝑖,𝑡𝑡 = 𝜎𝜎𝑖𝑖,𝑡𝑡𝑒𝑒𝑖𝑖,𝑡𝑡. The conditional variances are obtained with one of the following GARCH models: 

(GARCH) 𝜎𝜎𝑖𝑖,𝑡𝑡2 = 𝑎𝑎0𝑖𝑖 + 𝑎𝑎1𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡−12 + 𝑏𝑏1𝑖𝑖𝜎𝜎𝑖𝑖,𝑡𝑡−12 ; (EGARCH) log�𝜎𝜎𝑖𝑖,𝑡𝑡2 � = 𝑎𝑎0𝑖𝑖 + 𝑎𝑎1𝑖𝑖 �
�𝜀𝜀𝑖𝑖,𝑡𝑡−1�
𝜎𝜎𝑖𝑖,𝑡𝑡−1

− �2
𝜋𝜋
� + 𝑏𝑏1𝑖𝑖 log�𝜎𝜎𝑖𝑖,𝑡𝑡−12 � +

𝛿𝛿𝑖𝑖
𝜀𝜀𝑖𝑖,𝑡𝑡−1
𝜎𝜎𝑖𝑖,𝑡𝑡−1

; or (GJR) 𝜎𝜎𝑖𝑖,𝑡𝑡2 = 𝑎𝑎0𝑖𝑖 + 𝑎𝑎1𝑖𝑖𝜀𝜀𝑖𝑖,𝑡𝑡−12 + 𝑏𝑏1𝑖𝑖𝜎𝜎𝑖𝑖,𝑡𝑡−12 + 𝛿𝛿𝑖𝑖𝐼𝐼�𝜀𝜀𝑖𝑖,𝑡𝑡−1  < 0�𝜀𝜀𝑖𝑖,𝑡𝑡−12 . 𝜈𝜈 is the degree of freedom for the Student 

distribution of 𝑒𝑒𝑖𝑖,𝑡𝑡. p-values are given in parentheses. *** significant at the 1% level. ** significant at the 5% level. 
 

From the above results, given that the AR(1) coefficient,  𝜙𝜙1, is relatively high, one may wonder 

whether the time series of CDS spreads contain a unit root.5 We therefore conduct additional 

diagnostic tests using the error series obtained from our estimations in Table 5. We follow Diebold 

and Li (2006) and plot below the autocorrelations of the level, slope, curvature and gamma factors 

and the autocorrelations of their residuals. The graphs of Figure 5 provide good evidence on the 

goodness of fit of the AR-GARCH model fit for the estimated factors. The autocorrelations of the 

residuals are very small and not significantly different from zero. In other words, the AR-GARCH 

model estimates provided in Table 5 are appropriate to describe accurately the conditional mean 

and variance of the factors. Furthermore, in Table 6 below, we observe little difference between 

market observed CDS spreads and CDS spreads estimated using our AR-GARCH process. 

  

                                                           
5 We thank a referee for bringing that to our attention. 
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Figure 5: Autocorrelations of the level, slope, curvature and gamma factors and of their 
residuals 

 
 
 

Table 6: Observed and estimated CDS spreads and model errors 

Maturity 
(years) Mean St. dev. Min Max   Mean St. dev. Min Max 

Observed CDS spreads (in %)  Estimated CDS spreads (in %) 
1 0.3667 0.0838 0.2170 0.6433  0.3636 0.0831 0.2192 0.6460 
2 0.3663 0.0841 0.2161 0.6434  0.3370 0.0913 0.1868 0.6331 
3 0.3771 0.1163 0.2156 0.9437  0.4326 0.1045 0.2580 0.8831 
5 0.6759 0.1175 0.4532 1.2450  0.6970 0.1155 0.4760 1.2431 
7 0.9186 0.1153 0.6641 1.4400  0.9189 0.1119 0.6752 1.4405 
10 1.1042 0.1044 0.8530 1.5700   1.1390 0.1028 0.8851 1.5961 

 
Maturity 
(years) Mean St. dev. Min Max MAE RMSE 

Errors fit (in %) 
1 0.0032 0.0091 -0.0065 0.0813 0.0051 0.0096 
2 0.0294 0.0213 -0.1400 0.0795 0.0342 0.0363 
3 -0.0555 0.0208 -0.0911 0.0606 0.0574 0.0592 
5 -0.0211 0.0070 -0.0527 0.0275 0.0212 0.0222 
7 -0.0002 0.0137 -0.0472 0.0556 0.0101 0.0137 
10 -0.0347 0.0072 -0.0641 -0.0056 0.0347 0.0355 

Note: This table presents the results of the market observed CDS spreads, the estimated CDS spreads and model errors 
for the AR-GARCH process. 
 

3.3. Estimation results of the regime-switching RS-AR-GARCH 

We then further our above analysis by considering the regime-switching AR-GARCH 

process (equations 13 to 15), hereafter called RS-AR-GARCH processes. The first regime 
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corresponds to the period from September 27, 2013 to June 27, 2016, and the second one goes from 

June 28, 2016 to September 27, 2018 for the CDXIG index.  

Table 7 presents the estimated coefficients of the conditional mean and variance in the two 

regimes for different AR-GARCH processes, denoted by RS-AR-GARCH with normal distribution 

(indexed by N) and Student distribution (indexed by t). In most estimations, the AR coefficients of 

the conditional mean and the conditional variance coefficients are highly significant (at the 1% 

level). The parameter 𝜈𝜈 is highly significant in both regimes, which calls for the rejection of the 

assumption of constant degrees of freedom across regimes. These findings confirm the existence 

of two regimes observed in the term structure of CDS spreads plotted above. 

The estimated average volatility (mean_vol) in the first regime is always higher than that of 

the second regime. Consistent with the descriptive statistics above, the first regime is characterized 

by high volatility and higher persistence of shocks (measured by 𝑎𝑎1𝑠𝑠 + 𝑏𝑏1𝑠𝑠 in regime s). The second 

regime has lower volatility and lower persistence. Overall, the persistence coefficient is always 

above 0.80 for the first regime, while the minimum for the second regime is 0.36. This confirms 

the results reported in the descriptive statistics in Table 1 above. 

Table 7: Estimates of the regime-switching RS-AR-GARCH process 

     𝜙𝜙0 𝜙𝜙1 𝑎𝑎0 𝑎𝑎1 𝑏𝑏1 𝜈𝜈 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣 
𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 (𝜷𝜷𝟎𝟎𝟎𝟎) 

RS-AR-GARCH-N               

regime 1 0.0312 0.9819 0.0001 0.1798 0.6259  0.0211 

 (0.014)** (0.000)*** (0.000)*** (0.000)*** (0.000)***   
regime 2 0.0458 0.9731 0.0002 0.2343 0.1231  0.0172 

 (0.001)*** (0.000)*** (0.000)*** (0.000)*** (0.125)   
RS-AR-GARCH-t               

regime 1 0.0245 0.9857 0.0000 0.2348 0.7652 3.0702 0.0228 

 (0.009)*** (0.000)*** (0.008)*** (0.001)*** (0.000)*** (0.000)***  
regime 2 0.0081 0.9952 0.0001 0.3096 0.6240 2.7582 0.0202 
  (0.214) (0.000)*** (0.024)** (0.022)** (0.000)*** (0.000)***   

𝑺𝑺𝑳𝑳𝑺𝑺𝑺𝑺𝑳𝑳 (𝜷𝜷𝟏𝟏𝟎𝟎) 
RS-AR-GARCH-N               

regime 1 -0.0164 0.9824 0.0001 0.3524 0.6316  0.0222 

 (0.007)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***   
regime 2 -0.0895 0.9146 0.0001 0.4692 0.5308  0.0185 

 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)***   
RS-AR-GARCH-t               
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regime 1 -0.0030 0.9969 0.0000 0.3202 0.6798 2.2451 0.0215 

 (0.162) (0.000)*** (0.036)** (0.039)** (0.000)*** (0.000)***  
regime 2 -0.0015 0.9986 0.0000 0.4780 0.5220 2.0935 0.0143 
  (0.238) (0.000)*** (0.114) (0.131) (0.000)*** (0.000)***   

𝑪𝑪𝑪𝑪𝑪𝑪𝑳𝑳𝑪𝑪𝟎𝟎𝑪𝑪𝑪𝑪𝑳𝑳 (𝜷𝜷𝟐𝟐𝟎𝟎) 
RS-AR-GARCH-N               

regime 1 0.0006 0.9999 0.0000 0.0543 0.9457  0.0282 

 (0.492) (0.000)*** (0.000)*** (0.000)*** (0.000)***   
regime 2 -0.0138 0.9950 0.0001 0.2742 0.6447  0.0207 

 (0.263) (0.000)*** (0.000)*** (0.000)*** (0.000)***   
RS-AR-GARCH-t               

regime 1 -0.0011 0.9996 0.0000 0.4847 0.5153 2.1513 0.0177 

 (0.283) (0.000)*** (0.299) (0.001)*** (0.000)*** (0.000)***  
regime 2 0.0000 0.9999 0.0000 0.4724 0.5276 2.0824 0.0081 
  (0.500) (0.000)*** (0.234) (0.000)*** (0.000)*** (0.000)***   

𝜸𝜸𝟎𝟎 
RS-AR-GARCH-N               

regime 1 0.0001 0.9999 0.00003 0.5067 0.4608  0.0138 

 (0.480) (0.000)*** (0.000)*** (0.000)*** (0.000)***   
regime 2 -0.0007 0.9999 0.00002 0.4700 0.5300  0.0096 

 (0.361) (0.000)*** (0.000)*** (0.000)*** (0.000)***   
RS-AR-GARCH-t               

regime 1 0.0001 0.9999 0.0000 0.2994 0.7006 2.3152 0.0125 

 (0.490) (0.000)*** (0.024)** (0.009)*** (0.000)*** (0.000)***  
regime 2 0.0001 0.9997 0.0000 0.5269 0.4731 2.0784 0.0066 
  (0.416) (0.000)*** (0.137) (0.086) (0.000)*** (0.000)***   

Note: This table presents the results of the estimates of the beta and gamma factors under two regimes. Regime 1 runs 
from September 27, 2013 to June 27, 2016, and regime 2 runs from June 28, 2016 to September 27, 2018. The 
estimation of the parameters is performed by the maximum likelihood method. We model each error variance with a 
normal (N) and a Student (t) distribution. The conditional mean is 𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝜙𝜙0𝑠𝑠 + 𝜙𝜙1𝑠𝑠𝑦𝑦𝑖𝑖,𝑡𝑡−1 + 𝜀𝜀𝑖𝑖,𝑡𝑡, where s indicates the 
regime, 𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝑖𝑖𝑡𝑡 , 𝑖𝑖 = 0,1,2, 𝑦𝑦3,𝑡𝑡 = 𝛾𝛾𝑡𝑡 and 𝜀𝜀𝑖𝑖,𝑡𝑡 = 𝜎𝜎𝑖𝑖,𝑡𝑡𝑒𝑒𝑖𝑖,𝑡𝑡. The conditional variance is captured by the following 
GARCH process: 𝜎𝜎𝑖𝑖,𝑡𝑡2 = 𝑎𝑎0𝑖𝑖𝑠𝑠 + 𝑎𝑎1𝑖𝑖𝑠𝑠 𝜀𝜀𝑖𝑖,𝑡𝑡−12 + 𝑏𝑏1𝑖𝑖𝑠𝑠 𝜎𝜎𝑖𝑖,𝑡𝑡−12 . 𝜈𝜈 is the degree of freedom for the Student distribution of 𝑒𝑒𝑖𝑖,𝑡𝑡. The 
last column shows the mean of the estimated volatility (𝜎𝜎𝚤𝚤,𝑡𝑡𝑠𝑠� ) in each regime s. p-values are in parentheses. *** 
significant at the 1% level. ** significant at the 5% level.  
 

3.4. In-sample comparison of the models 

Having performed the estimation of the different models, we now compare model 

performance to see which one better fits the actual data. To do so, we use five comparison criteria: 

(1) the Akaike information criterion (AIC), (2) the Bayesian information criterion (BIC), (3) the 

log likelihood (log(L)), (4) the root mean square error (RMSE) and (5) the mean absolute error 

(MAE). For each criterion, we indicate the rank of the model relative to the other models with 
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respect to the indicated statistic. The best model is the one that ranks first the most times. In other 

words, the model that has the highest log(L) and the lowest AIC, BIC, RMSE and MAE overall.  

Table 8 presents the comparison statistics and rank for each model using the full sample. 

Based on the five comparison statistics, the RS-AR-GARCH-N model ranks first in 40% of the 

cases (8/20), followed by the RS-AR-GARCH-t (rank 1, 35% of times) and AR-EGARCH-t (25% 

of times). The Diebold-Li VAR model, used by Shaw et al. (2014) to model CDS spread dynamics, 

performs relatively poorly, ranking fourth in 10% of the cases. The top three models are 

respectively RS-AR-GARCH-N, RS-AR-GARCH-t and AR-EGARCH-t. Unlike the Diebold-Li 

VAR or AR model, our results confirm the fact that CDS spread dynamics are better captured with 

a regime-switching AR-GARCH type model, whereas the AR-EGARCH model captures the 

asymmetry or leverage effect in CDS spreads. This effect occurs when an unexpected increase in 

CDS spreads (bad news for the credit risk taker) increases predictable volatility more than an 

unexpected drop in CDS spreads (good news for the credit risk taker) of similar magnitude. As 

shown in Table 7 above, the first regime is more volatile than the second one. 

Table 8: In-sample comparison of the models’ performance  

Model AIC Rank BIC Rank Log (L) Rank RMSE Rank MAE Rank 
𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 (𝜷𝜷𝟎𝟎𝟎𝟎) 

RS-AR-GARCH-N -6320.73 8 -6295.10 8 3165.36 8 0.0002 1 0.00005 1 
RS-AR-GARCH-t -6615.05 3 -6589.42 1 3312.52 3 0.0032 5 0.0017 6 
AR-GARCH-N -6325.17 7 -6299.55 7 3167.59 7 0.0028 4 0.0015 5 
AR-GARCH-t -6601.43 4 -6570.68 4 3306.71 4 0.0051 6 0.0010 4 
AR-EGARCH-N -6365.14 5 -6334.39 5 3188.57 5 0.0027 3 0.0008 3 
AR-EGARCH-t -6619.61 1 -6583.73 2 3316.80 1 0.0021 2 0.0007 2 
AR-GJR-N -6356.43 6 -6325.69 6 3184.22 6 0.0494 8 0.0436 8 
AR-GJR-t -6615.97 2 -6580.10 3 3314.99 2 0.0704 9 0.0655 9 
Diebold-Li VAR  -6153.14 10 -6127.51 10 3081.57 10 0.0202 7 0.0134 7 
Diebold-Li AR -6160.80 9 -6150.55 9 3082.40 9 0.0202 7 0.0135 7 

𝑺𝑺𝑳𝑳𝑺𝑺𝑺𝑺𝑳𝑳 (𝜷𝜷𝟏𝟏𝟎𝟎) 
RS-AR-GARCH-N -6461.00 5 -6435.37 5 3235.50 5 0.0012 1 0.0002 1 
RS-AR-GARCH-t -8040.96 1 -8015.34 1 4025.48 1 0.0290 7 0.0201 7 
AR-GARCH-N -6399.76 8 -6374.14 8 3204.88 8 0.0122 3 0.0029 3 
AR-GARCH-t -7952.67 3 -7921.92 3 3982.33 4 0.0308 8 0.0269 8 
AR-EGARCH-N -6458.07 6 -6427.32 6 3235.03 6 0.0085 2 0.0019 2 
AR-EGARCH-t -8029.97 2 -7994.10 2 4021.99 2 0.0225 4 0.0198 6 
AR-GJR-N -6441.25 7 -6410.50 7 3226.62 7 0.0446 9 0.0287 9 
AR-GJR-t -7950.85 4 -7914.98 4 3982.42 3 0.0458 10 0.0420 10 
Diebold-Li VAR -5856.05 9 -5830.43 10 2933.03 9 0.0228 5 0.0107 5 
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Diebold-Li AR -5841.99 10 -5831.74 9 2922.99 10 0.0230 6 0.0105 4 
𝑪𝑪𝑪𝑪𝑪𝑪𝑳𝑳𝑪𝑪𝟎𝟎𝑪𝑪𝑪𝑪𝑳𝑳 (𝜷𝜷𝟐𝟐𝟎𝟎) 

RS-AR-GARCH-N -5996.79 6 -5971.17 6 3003.40 6 0.0001 1 0.00003 1 
RS-AR-GARCH-t -11004.96 2 -10979.3 2 5507.48 2 0.0058 5 0.0048 5 
AR-GARCH-N -5943.52 8 -5917.90 8 2976.76 8 0.0077 6 0.0053 6 
AR-GARCH-t -10983.26 3 -10952.5 3 5497.63 4 0.0003 4 0.0003 4 
AR-EGARCH-N -6017.44 5 -5986.70 5 3014.72 5 0.0003 3 0.0003 3 
AR-EGARCH-t -11073.83 1 -11037.9 1 5543.91 1 0.0002 2 0.0002 2 
AR-GJR-N -5962.93 7 -5932.19 7 2987.47 7 0.1667 10 0.1415 10 
AR-GJR-t -10981.50 4 -10945.6 4 5497.75 3 0.0481 9 0.0411 9 
Diebold-Li VAR -5611.80 9 -5586.18 9 2810.90 9 0.0251 7 0.0106 8 
Diebold-Li AR -5595.58 10 -5585.33 10 2799.79 10 0.0254 8 0.0098 7 

𝜸𝜸𝟎𝟎 
RS-AR-GARCH-N -7796.39 6 -7770.76 6 3903.19 6 0.00004 1 0.00003 1 
RS-AR-GARCH-t -9732.48 1 -9706.86 1 4871.24 1 0.0015 2 0.0011 2 
AR-GARCH-N -7787.53 7 -7761.91 7 3898.77 8 0.0250 6 0.0250 6 
AR-GARCH-t -9598.62 4 -9567.87 3 4805.31 4 0.0257 7 0.0254 7 
AR-EGARCH-N -7819.08 5 -7788.33 5 3915.54 5 0.0266 8 0.0266 8 
AR-EGARCH-t -9665.87 2 -9630.00 2 4839.93 2 0.0286 9 0.0286 9 
AR-GJR-N -7785.58 8 -7754.83 8 3898.79 7 0.0117 3 0.0102 5 
AR-GJR-t -9600.76 3 -9564.89 4 4807.38 3 0.1459 10 0.1318 10 
Diebold-Li VAR -7070.08 9 -7044.46 9 3540.039 9 0.0140 4 0.0062 4 
Diebold-Li AR -7041.48 10 -7031.23 10 3522.74 10 0.0142 5 0.0056 3 

Note: This table compares different specification of the AR-GARCH models based on certain criteria like: (1) Akaike 
information criterion: AIC=-2Log(L)+2k; (2) Bayesian information criterion: BIC=-2Log(L)+kLog(T); (3) Log 

likelihood (Log(L)); (4) Root mean square error: RMSE =  �∑ (𝑦𝑦𝑖𝑖𝑡𝑡−𝑦𝑦𝚤𝚤𝑡𝑡� )2𝑇𝑇
𝑡𝑡=1

𝑇𝑇
 ; and (5) Mean absolute error: 𝑀𝑀𝐴𝐴𝑀𝑀 =

 ∑ |𝑦𝑦𝑖𝑖𝑡𝑡−𝑦𝑦𝚤𝚤𝑡𝑡� |𝑇𝑇
𝑡𝑡=1

𝑇𝑇
, 𝑖𝑖 = 1, 2, 3, 4, where k is the number of parameters and T the number of observations. 

 
 

Figures 6 and 7 compare the term structure of CDS spreads estimated by the different 

models (AR-GARCH and Diebold-Li) with the actual data at the end of regime 1, i.e. on 27 June 

2016 (Figure 6), and end of regime 2, i.e. on 27 September 2018 (Figure 7). We observe that at the 

end of regime 1, the AR-GARCH models estimate the term structure of CDS spreads better, except 

the AR-GJR and the Diebold-Li models, which exhibit poor performance. At the end of regime 2, 

all the models perform well, except the AR-GJR-t model.  

These results underscore once again our assumption that the non-regime-switching AR 

process proposed by Diebold-Li cannot capture the regime-switching observed in CDS spreads. 

Indeed, during highly volatile periods (regime 1), the Diebold-Li VAR or AR model performs 

poorly, while during low volatility periods (regime 2), the model performs relatively well.  
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Figure 6: Actual and fitted CDS spreads curve at the end of regime 1 

Note: These graphs present the actual and fitted CDS spreads curve at the end of regime 1 (i.e., June 27, 2016) using 
the estimated beta factors from each process in the extended Nelson-Siegel model. 
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Figure 7: Actual and fitted CDS spreads curve at the end of regime 2 

Note: These graphs present the actual and fitted CDS spreads curve at the end of regime 2 (i.e., September 27, 2018) 
using the estimated beta factors from each estimated process in the extended Nelson-Siegel model. 
 
 
3.5. Out-of-sample comparison of the models  

We further our comparison of the models by running the comparison tests out-of-sample. 

For that purpose, we compare the different specifications of the AR-GARCH process to see which 

one has the best predictive ability. We do that by estimating the model parameters on the first half 

of the sample (in-sample estimation with 621 observations), and then use the second half of the 

sample data (out-of-sample) to forecast the CDS spreads for one-day and five-day horizons. We 

use a rolling window to calculate the forecast errors for one-day and five-day horizon at each stage 

and then compute the root mean square error (RMSE) and the mean absolute error (MAE). The 

procedure is summarized as follows:  

1. Estimate the parameters of the models using the first half of the sample (1, 2, ..., 621); 
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2. Forecast the CDS spreads for one-day and five-day (622 and 626); 

3. Evaluate the forecast error out-of-sample: 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡+ℎ − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡+ℎ� , with h = 1 or h = 5; 

4. Repeat steps 1 to 3 with a one-day step ahead through the whole sample; 

5. Compute the RMSE and the MAE out-of-sample for the two forecast series: one-day and 

five-day horizon. 

After computing the RMSE and the MAE, we identify the rank of each model with respect 

to these two statistics. The best model is the one that has the lowest RMSE and MAE, and therefore 

ranks 1 the most times. Table 9 presents the comparison results. By combining the two statistics 

(RMSE and MAE) and the six maturities of the CDS spreads, a model has a maximum of 12 

chances of being in a given rank. The RS-AR-GARCH-N process comes in the first place, ranking 

1 four times out of 12 (33% of cases) and 2 and 3 in 17% of instances. It is followed by the AR-

EGARCH-N process (25% of times rank 1, 8% in rank 2 and 17% in rank 3), the RS-AR-GARCH-

t process (17% in rank 1, 25% in rank 2, and 0% in rank 3), the AR-GJR-N process (17% in rank 

1, 0% in rank 2, 0% in rank 3) and the Diebold-Li VAR process (0% in rank 1, 8% in rank 2, 42% 

in rank 3). These results are the same for the one-day and five-day forecasts; the time horizon seems 

to have no influence on the performance of the model. 

As in the above in-sample case, the RS-AR-GARCH-N, AR-EGARCH-N and RS-AR-

GARCH-t are the top three models. They outperform the other models in-sample and out-of-

sample. These findings confirm the regime dependency of CDS spreads, with the first regime being 

more volatile than the second one. The EGARCH model allows for differential impacts of good 

and bad news on CDS spread volatility, whereas in the standard GARCH process this impact is 

assumed to be the same. 
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Table 9: Out-of-sample evaluation of the one-day and five-day forecasts of CDS spreads 

Model RMSE Rank MAE Rank   RMSE Rank MAE Rank 
 CDS1y 
  One-day forecast   Five-day forecast 

RS-AR-GARCH-N 0.0062 3 0.0053 3  0.0061 3 0.0053 3 
RS-AR-GARCH-t 0.0317 10 0.0307 10  0.0315 10 0.0306 10 
AR-GARCH-N 0.0048 2 0.0039 2  0.0048 2 0.0040 2 
AR-GARCH-t 0.0134 5 0.0118 7  0.0134 5 0.0118 7 
AR-EGARCH-N 0.0048 1 0.0039 1  0.0048 1 0.0039 1 
AR-EGARCH-t 0.0073 4 0.0062 4  0.0073 4 0.0062 4 
AR-GJR-N 0.0241 8 0.0176 8  0.0230 8 0.0171 8 
AR-GJR-t 0.0316 9 0.0242 9  0.0314 9 0.0240 9 
Diebold-Li VAR 0.0156 6 0.0114 5  0.0156 6 0.0114 5 
Diebold-Li AR 0.0158 7 0.0117 6  0.0158 7 0.0117 6 

 CDS2y 
  
  One-day forecast   Five-day forecast 

RS-AR-GARCH-N 0.0358 5 0.0356 7  0.0359 5 0.0356 7 
RS-AR-GARCH-t 0.0153 1 0.0146 1  0.0154 1 0.0147 1 
AR-GARCH-N 0.0328 4 0.0325 4  0.0328 4 0.0325 4 
AR-GARCH-t 0.0410 8 0.0406 8  0.0410 8 0.0406 8 
AR-EGARCH-N 0.0321 3 0.0318 3  0.0321 3 0.0318 3 
AR-EGARCH-t 0.0253 2 0.0250 2  0.0254 2 0.0250 2 
AR-GJR-N 0.0621 9 0.0595 9  0.0614 9 0.0591 9 
AR-GJR-t 0.0751 10 0.0701 10  0.0750 10 0.0700 10 
Diebold-Li VAR 0.0384 7 0.0355 6  0.0384 7 0.0355 6 
Diebold-Li AR 0.0380 6 0.0350 5  0.0380 6 0.0350 5 

 CDS3y 
  One-day forecast   Five-day forecast 

RS-AR-GARCH-N 0.0516 2 0.0500 2  0.0516 2 0.0501 2 
RS-AR-GARCH-t 0.0688 8 0.0674 8  0.0688 8 0.0674 8 
AR-GARCH-N 0.0648 6 0.0635 6  0.0649 6 0.0636 6 
AR-GARCH-t 0.0575 5 0.0561 5  0.0576 5 0.0562 5 
AR-EGARCH-N 0.0662 7 0.0649 7  0.0663 7 0.0650 7 
AR-EGARCH-t 0.0725 9 0.0712 9  0.0725 9 0.0712 9 
AR-GJR-N 0.0389 1 0.0366 1  0.0390 1 0.0366 1 
AR-GJR-t 0.2363 10 0.2334 10  0.2364 10 0.2334 10 
Diebold-Li VAR 0.0536 3 0.0507 3  0.0537 3 0.0508 3 
Diebold-Li AR 0.0541 4 0.0512 4  0.0541 4 0.0513 4 
 CDS5y 

  One-day forecast   Five-day forecast 
RS-AR-GARCH-N 0.0077 1 0.0061 1  0.0076 1 0.0061 1 
RS-AR-GARCH-t 0.0134 2 0.0107 2  0.0134 2 0.0108 2 
AR-GARCH-N 0.0241 7 0.0231 7  0.0242 7 0.0232 7 
AR-GARCH-t 0.0180 6 0.0165 6  0.0181 6 0.0166 6 
AR-EGARCH-N 0.0261 8 0.0251 8  0.0261 8 0.0251 8 
AR-EGARCH-t 0.0314 9 0.0305 9  0.0315 9 0.0306 9 
AR-GJR-N 0.0172 5 0.0120 5  0.0169 3 0.0118 3 
AR-GJR-t 0.2522 10 0.2497 10  0.2524 10 0.2498 10 
Diebold-Li VAR 0.0171 3 0.0119 3  0.0171 4 0.0119 4 
Diebold-Li AR 0.0172 4 0.0122 4  0.0172 5 0.0122 5 

Model RMSE Rank MAE Rank   RMSE Rank MAE Rank 
 CDS7y 
  One-day forecast   Five-day forecast 

RS-AR-GARCH-N 0.0339 7 0.0296 7  0.0340 7 0.0297 7 
RS-AR-GARCH-t 0.0271 5 0.0217 5  0.0272 5 0.0218 5 
AR-GARCH-N 0.0181 2 0.0153 1  0.0182 2 0.0153 1 
AR-GARCH-t 0.0190 4 0.0154 3  0.0190 4 0.0155 3 
AR-EGARCH-N 0.0180 1 0.0153 2  0.0180 1 0.0153 2 
AR-EGARCH-t 0.0183 3 0.0158 4  0.0183 3 0.0158 4 
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AR-GJR-N 0.0290 6 0.0267 6  0.0290 6 0.0268 6 
AR-GJR-t 0.2265 10 0.2220 10  0.2264 10 0.2220 10 
Diebold-Li VAR 0.0373 9 0.0309 9  0.0374 9 0.0310 9 
Diebold-Li AR 0.0369 8 0.0304 8  0.0370 8 0.0305 8 
 CDS10y 

  One-day forecast   Five-day forecast 
RS-AR-GARCH-N 0.0149 1 0.0135 1  0.0149 1 0.0136 1 
RS-AR-GARCH-t 0.0202 2 0.0195 4  0.0202 2 0.0195 4 
AR-GARCH-N 0.0372 6 0.0369 6  0.0373 6 0.0370 6 
AR-GARCH-t 0.0329 5 0.0324 5  0.0329 5 0.0325 5 
AR-EGARCH-N 0.0389 7 0.0386 7  0.0389 7 0.0386 7 
AR-EGARCH-t 0.0425 8 0.0422 9  0.0425 8 0.0422 9 
AR-GJR-N 0.0452 9 0.0411 8  0.0453 9 0.0412 8 
AR-GJR-t 0.2353 10 0.2329 10   0.2354 10 0.2329 10 
Diebold-Li VAR 0.0214 3 0.0172 2  0.0214 3 0.0173 2 
Diebold-Li AR 0.0216 4 0.0176 3  0.0217 4 0.0176 3 

Note: We use the first half of the sample as in-sample and the other half as out-of-sample to forecast the CDS spreads 
one- and five-step-ahead using rolling windows. We compare each forecast to the actual data and compute the root 

mean square error: RMSE = �∑ (𝑐𝑐𝑑𝑑𝑠𝑠𝑡𝑡−𝑐𝑐𝑑𝑑𝑠𝑠𝑡𝑡�)2𝑇𝑇
𝑡𝑡=1

𝑇𝑇
 and the mean absolute error: 𝑀𝑀𝐴𝐴𝑀𝑀 =  ∑ �𝑐𝑐𝑑𝑑𝑠𝑠𝑡𝑡−𝑐𝑐𝑑𝑑𝑠𝑠𝑡𝑡��𝑇𝑇

𝑡𝑡=1
𝑇𝑇

. 

4. Risk-based capital analysis  

In this section we analyse the risk-based capital needed to cover unexpected losses associated 

with the underwriting of CDS contracts. The capital-at-risk is an additional criterion that we use to 

evaluate the competing models in the risk-management context. In other words, which AR-

GARCH model better fits the realized capital-at-risk computed with the actual data. Dacco and 

Satchell (1999) demonstrate that the evaluation of forecasts from non-linear models using statistical 

measures might be quite misleading. We then use both statistical and risk-management techniques 

to evaluate our models and their ability to predict volatility. 

We focus on the risk incurred by a protection seller. We compute the conditional value-at-

risk, also known as the credit expected shortfall, at the 97.5% confidence level, in line with the new 

Basel III recommendation. To do so, we first need to calculate the changes in the value of the CDS 

over a given time horizon h. We apply a mark-to-market approach to compute the profit and loss 

distribution of the CDS. As the market quote of the CDS does not represent the value of the 

position, we use a reduced form model to mark-to-market the position. We follow Raunig and 

Scheicher (2011) and compute the value at time t of a CDS position for a protection seller as 

follows6: 

𝑉𝑉𝑡𝑡 = (𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝑐𝑐𝑐𝑐𝑐𝑐0) 1−exp (−(𝑟𝑟+𝜆𝜆)𝑇𝑇)
𝑟𝑟+𝜆𝜆

         (16) 

                                                           
6 See Appendix A in Raunig and Scheicher (2011) for the outlines of the derivation. 
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𝜆𝜆 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑝𝑝𝑟𝑟𝑒𝑒𝑠𝑠𝑑𝑑
1−𝑅𝑅

             (17) 

where 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 is the premium observed in the market at time t, 𝑐𝑐𝑐𝑐𝑐𝑐0 is the fair CDS premium at t = 0, 

r is the risk-free interest rate that is assumed constant over the remaining life of the swap, 𝜆𝜆 is the 

hazard rate (assumed constant), T is the remaining life of the swap and R is the recovery rate. In 

addition, we assume no counterparty default risk and continuous premium payments until either 

the CDS matures or the underlying bond defaults.  

The first part of equation (16) is the variation in CDS premia from 0 to time t, and the second 

part represents the risky duration which is driven by the firm’s default intensity. For the credit risk 

taker (protection seller), the value of the CDS rises if 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 < 𝑐𝑐𝑐𝑐𝑐𝑐0, and falls if 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 > 𝑐𝑐𝑐𝑐𝑐𝑐0. Then, 

the change in the value of the CDS h days later is given by ∆𝑉𝑉ℎ = −𝑉𝑉ℎ and represents the profit 

and loss distribution (P&L). Based on the P&L, we compute the expected loss (EL) by taking the 

mean of ∆𝑉𝑉ℎ and the unexpected or expected shortfall (ES) of ∆𝑉𝑉ℎ at the 97.5% confidence level 

(e.g. Lai and Soumaré (2010) and Soumaré and Tafolong (2017)), which allow us to compute the 

credit expected shortfall as the difference between ES and EL.7  

To empirically compute 𝑉𝑉𝑡𝑡 in equation (16), we use the two categories of indexes as described 

in subsection 3.1, i.e. the CDX North American Investment Grade index (CDXIG) and the CDX 

North American High Yield (CDXHY) index. We use the overnight indexed swap (OIS) rate curve 

as of September 27, 2013 and a recovery rate of 40% for the CDXIG and 30% for the CDXHY. 

The capital-at-risk is obtained as the credit expected shortfall at the 97.5% confidence level as 

follows: we compute ∆𝑉𝑉ℎ using a rolling window starting with the first 252 trading days in our 

sample. Next we compute the credit expected shortfall for two weeks, one month, three months 

and six months horizon at each one-day step. We consider these generated values as our benchmark 

calculation. Furthermore, we compute the values of the CDS using the AR-GARCH processes 

estimated in subsections 3.2 and 3.3. We can then compare the performance of each model.  

                                                           
7 In the case of a normal distribution, we have 𝑀𝑀𝐸𝐸1−𝛼𝛼,ℎ = 𝜇𝜇ℎ + 𝜎𝜎ℎ

𝜙𝜙(Φ−1(1−𝛼𝛼))
𝛼𝛼

, where 𝜙𝜙 and Φ are, respectively, the 
probability density function (PDF) and the cumulative distribution function (CDF) of the standard normal 
distribution. For the Student distribution, the expected shortfall is computed as follows: 𝑀𝑀𝐸𝐸1−𝛼𝛼,ℎ = 𝜇𝜇ℎ +

𝜎𝜎ℎ
𝑔𝑔𝜈𝜈(𝑡𝑡𝜈𝜈−1(1−𝛼𝛼)))

𝛼𝛼
𝜈𝜈+(𝑡𝑡𝜈𝜈−1(1−𝛼𝛼))2

𝜈𝜈−1
�𝜈𝜈−2

𝜈𝜈
, where 𝑔𝑔𝜈𝜈 and 𝑡𝑡𝜈𝜈 are, respectively, the PDF and CDF of the standard t 

distribution with 𝜈𝜈 degree of freedom and 1- 𝛼𝛼 = 97.5%. The parameters 𝜇𝜇ℎ and 𝜎𝜎ℎ are computed using the AR-
GARCH process. 
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Table 10 presents the results for a five-year CDS contract on investment grade firms that is 

the most frequently traded. For the single regime, we find that the capital-at-risk increases as the 

holding period increases. In addition, we observe that the capital-at-risk estimated with the RS-

AR-GARCH-N process underestimates the capital-at-risk by less, the value obtained being much 

closer to the actual data calculation than the one estimated with the Diebold-Li AR process. For 

example, in the first regime, the capital-at-risk over a 2-week horizon is 3.68% with the actual data, 

3.61% with the RS-AR-GARCH process and 3.19% with the Diebold-Li AR process. We also note 

that the capital-at-risk in the second regime is lower than that in the first regime, confirming our 

previous claim that the first regime is the most volatile. 

Table 10: Capital-at-risk (in %) of a protection seller of CDS contracts on investment grade 
firms 

Model 
Single 
regime Regime 1 Regime 2   

Single 
regime Regime 1 Regime 2 

  
97.5% credit expected shortfall,  

2-week horizon    
97.5% credit expected shortfall,  

1-month horizon  
RS-AR-GARCH-N 2.8048 3.6155 2.1503  4.0645 5.2394 3.1160 
RS-AR-GARCH-t 3.3877 4.2925 2.5957  4.9093 6.2204 3.7616 
AR-GARCH-N 2.9184 3.6155 2.1503  4.2292 5.2394 3.1160 
AR-GARCH-t 3.5466 4.2925 2.5957  5.1395 6.2204 3.7616 
AR-EGARCH-N 2.8828 3.6045 2.0515  4.1776 5.2234 2.9729 
AR-EGARCH-t 3.3960 4.2982 2.4343  4.9213 6.2287 3.5276 
AR-GJR-N 3.0327 3.8192 2.2192  4.3948 5.5346 3.2160 
AR-GJR-t 3.4722 4.4259 2.5656  5.0316 6.4138 3.7178 
Diebold-Li VAR 2.9487 3.2373 2.3193  4.2731 4.6912 3.3609 
Diebold-Li AR 2.9071 3.1960 2.2843  4.2127 4.6314 3.3102 
Actual data 2.8673 3.6847 2.2159  4.1551 5.3397 3.2112 

  
97.5% credit expected shortfall,  

3-month horizon    
97.5% credit expected shortfall,  

6-month horizon  
RS-AR-GARCH-N 7.0400 9.0748 5.3971  9.9561 12.8337 7.6327 
RS-AR-GARCH-t 8.5032 10.7740 6.5152  12.0253 15.2368 9.2139 
AR-GARCH-N 7.3252 9.0748 5.3971  10.3594 12.8337 7.6327 
AR-GARCH-t 8.9018 10.7740 6.5152  12.5891 15.2368 9.2139 
AR-EGARCH-N 7.2358 9.0471 5.1492  10.2329 12.7946 7.2821 
AR-EGARCH-t 8.5240 10.7884 6.1101  12.0547 15.2571 8.6409 
AR-GJR-N 7.6121 9.5862 5.5702  10.7651 13.5569 7.8775 
AR-GJR-t 8.7150 11.1090 6.4395  12.3249 15.7105 9.1068 
Diebold-Li VAR 7.4012 8.1255 5.8213  10.4668 11.4912 8.2325 
Diebold-Li AR 7.2967 8.0219 5.7335   10.3191 11.3447 8.1084 
Actual data 7.1968 9.2486 5.5619  10.1779 13.0795 7.8657 

Note: This table presents the average capital-at-risk estimates at the 97.5% confidence level (expressed in % of the 
notional) of a protection seller for a five-year CDS contract underwritten on investment grade firms for respective 
holding periods of 2 weeks, 1 month, 3 months and 6 months. 
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     Table 11 presents the average capital-at-risk of a protection seller for a 1, 2,3,5,7 and 10-year 

CDS contract underwritten on investment grade firms for a 2-week horizon. We observe that for 

short maturity CDS spreads, the capital-at-risk is higher than that of long maturity ones. This seems 

to be due to the fact that profits-and-losses are more volatile with short maturity.  

 Table 11: Capital-at-risk (in %) of a protection seller of CDS contracts on investment 
grade firms 

Model  CDS1Y CDS2Y CDS3Y CDS5Y CDS7Y CDS10Y 

  
97.5% credit expected shortfall, 

2-week horizon 
  Single regime: September 27, 2013 - September 27, 2018 
RS-AR-GARCH-N  3.1757 2.9242 3.0030 2.8048 2.5641 2.3794 
RS-AR-GARCH-t  3.5213 3.8156 3.6972 3.3877 3.0365 2.7427 
AR-GARCH-N  3.3596 3.0845 3.1466 2.9184 2.6700 2.4835 
AR-GARCH-t  3.4651 3.9493 3.8931 3.5466 3.1656 2.8576 
AR-EGARCH-N  3.3161 3.0376 3.1383 2.8828 2.6317 2.4442 
AR-EGARCH-t  4.8382 3.8704 3.7532 3.3960 3.0295 2.7476 
AR-GJR-N  3.4170 3.0861 3.2781 3.0327 2.7720 2.5479 
AR-GJR-t  3.4445 4.0225 3.9112 3.4722 3.1236 2.9354 
Diebold-Li VAR  3.3036 3.0533 3.1426 2.9487 2.7085 2.4973 
Diebold-Li AR   3.2963 3.0370 3.1052 2.9071 2.6693 2.4616 
  Regime 1: September 27, 2013 - June 27, 2016 
RS-AR-GARCH-N  3.8713 3.5477 3.7410 3.6155 3.3143 3.0432 
RS-AR-GARCH-t  3.6582 4.7462 4.5447 4.2925 3.8807 3.5005 
AR-GARCH-N  3.8713 3.5477 3.7410 3.6155 3.3143 3.0432 
AR-GARCH-t  3.6582 4.7462 4.5447 4.2925 3.8807 3.5005 
AR-EGARCH-N  3.8146 3.4764 3.7903 3.6045 3.3281 3.0563 
AR-EGARCH-t  6.2324 4.6341 4.5722 4.2982 3.8587 3.4590 
AR-GJR-N  3.8246 3.5323 3.8427 3.8192 3.4852 3.1421 
AR-GJR-t  3.5740 4.7713 4.7197 4.4259 3.9678 3.6307 
Diebold-Li VAR  3.4952 3.2074 3.3628 3.2373 2.9726 2.7107 
Diebold-Li AR  3.4874 3.1893 3.3222 3.1960 2.9362 2.6795 
  Regime 2: June 28, 2016 - September 27, 2018 
RS-AR-GARCH-N  2.5905 2.3838 2.3662 2.1503 1.9791 1.8802 
RS-AR-GARCH-t  3.2368 2.8952 2.8505 2.5957 2.3397 2.1427 
AR-GARCH-N  2.5905 2.3838 2.3662 2.1503 1.9791 1.8802 
AR-GARCH-t  3.2368 2.8952 2.8505 2.5957 2.3397 2.1427 
AR-EGARCH-N  2.5066 2.3092 2.2352 2.0515 1.9033 1.8433 
AR-EGARCH-t  3.1042 2.7972 2.6550 2.4343 2.2378 2.0854 
AR-GJR-N  2.5715 2.3783 2.3825 2.2192 2.0420 1.9143 
AR-GJR-t  3.2791 2.9691 2.9579 2.5656 2.3343 2.3038 
Diebold-Li VAR  2.7095 2.5221 2.5402 2.3193 2.1405 2.0137 
Diebold-Li AR  2.7091 2.5148 2.5139 2.2843 2.1032 1.9744 
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Note: This table presents the average capital-at-risk estimates at the 97.5% confidence level (expressed in % of the 
notional) of a protection seller for a 1, 2, 3, 5, 7 and 10-year CDS contract underwritten on investment grade firms for 
a holding period of 2 weeks. 
 

In order to highlight the impact of the credit quality on the risk-based capital, we compute 

the credit expected shortfall for the CDXHY index and compare it to that of the CDXIG index. We 

recall that firms in the high-yield segment have lower credit rating than those in the investment 

grade segment, in other words, high yield (HY) firms present higher risk of default than investment 

grade (IG) firms. We use the five-year CDS contracts (which are the most liquid) to estimate the 

capital-at-risk of a protection seller at the 97.5% confidence level for the two categories of 

reference entities. We use a rolling window starting with the first 252 trading days in our sample, 

and then compute the capital-at-risk for two weeks, one month, three months and six months 

horizon in each one-day step.  

Table 12 presents the descriptive statistics of the capital-at-risk estimates for the entire 

sample period as well as for the two regimes (high volatility versus low volatility). For contracts 

underwritten on IG reference entities, over the entire sample period, the risk-based capital required 

increases as the holding period increases. This is because the default probability for an IG firm is 

very low for short holding horizons. Hence, CDS contracts on IG firms require higher capital-at-

risk when the holding period becomes longer. Moreover, the higher capital-at-risk observed for the 

whole sample is driven by the first sample period corresponding to the high volatility regime, since 

the second regime is characterised by low realised defaults and persistent decline in CDS spreads. 

Similarly, for CDS contracts underwritten on HY firms, the required capital-at-risk is high for long 

holding periods and under the first regime. Comparing CDS contracts underwritten on the two 

categories of firms (IG versus HY), the protection seller of CDS contracts on HY firms has to put 

aside at least twice the amount that is needed to cover unexpected losses on CDSs with reference 

entity IG firms.  

Table 12: Capital-at-risk (% of notional) of a protection seller of 5-year CDS contract 

Holding  
Period Mean St. dev. Min Max  Mean St. dev. Min Max 

 Investment grade credit rating firms  High yield credit rating firms 

 Single regime: Sep. 27, 2013 - Sep. 27, 2018  Single regime: Sep. 27, 2013 - Sep. 27, 2018 
2 weeks 2.87 1.22 1.53 8.16  9.71 2.47 6.53 53.01 

https://www.investopedia.com/terms/c/creditrating.asp
https://www.investopedia.com/terms/d/default2.asp
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1 month 4.16 1.77 2.22 11.83  14.07 3.57 9.47 76.82 
3 months 7.20 3.07 3.84 20.49  24.38 6.19 16.39 133.05 
6 months 10.18 4.34 5.44 28.98  34.47 8.76 23.19 188.17 

 Regime 1: Sep. 27, 2013 - June 27, 2016  Regime 1: Sep. 27, 2013 - Feb. 11, 2016 
2 weeks 3.68 1.30 1.91 8.16  9.91 2.56 6.53 18.44 
1 month 5.34 1.89 2.76 11.83  14.36 3.71 9.47 26.72 
3 months 9.25 3.27 4.78 20.49  24.86 6.43 16.39 46.28 
6 months 13.08 4.63 6.76 28.98  35.16 9.10 23.19 65.45 

 Regime 2: June 28, 2016 - Sep. 27, 2018  Regime 2: Feb. 12, 2016 - Sep. 27, 2018 
2 weeks 2.22 0.75 1.53 5.62  9.61 3.02 9.25 53.01 
1 month 3.21 1.09 2.22 8.14  13.93 4.38 13.40 76.82 
3 months 5.56 1.88 3.84 14.09  24.12 7.59 23.22 133.05 
6 months 7.87 2.66 5.44 19.93   34.12 10.73 32.83 188.17 

Note: This table shows descriptive statistics of the capital-at-risk estimates (expressed in % of the notional) at the 
97.5% confidence level for a protection seller of a five-year CDS contract on investment grade or high yield reference 
entity. The estimation uses rolling windows starting with the first 252 trading days in our sample, and then computes 
the capital-at-risk for two weeks, one month, three months and six months horizon in each one-day step.   
 

5. Conclusion 

We use an extended version of the Diebold-Li dynamic Nelson-Siegel (DNS) model to fit the 

term structure of CDS spreads. In contrast to the vector autoregressive process VAR(1) proposed 

by Diebold and Li (2006) to capture the dynamics of the three beta factors (level, slope and 

curvature), we propose a family of AR-GARCH process to capture the dynamics of the conditional 

mean and the conditional volatility of CDS spreads and regime-switching AR-GARCH process to 

capture high and low volatility regimes in CDS spreads.  

Using data on of the CDX North American Investment Grade index (CDXIG) and the CDX 

North American High Yield index (CDXHY), we use our proposed model to determine the risk-

based capital of a protection seller of CDS contracts. We find that the regime-switching AR-

GARCH process outperforms all the other processes (standard AR-GARCH, AR-EGARCH, and 

AR-GJR, Diebold-Li). Moreover, we find that the capital-at-risk of a protection seller of CDS 

contracts on the investment grade (IG) reference increases with the holding period. The higher 

level of capital-at-risk observed in the whole sample is driven mainly by the first sample period, 

which corresponds to the high volatility regime, since the second regime is characterised by low 

realised defaults and persistent decline in CDS spreads. Similarly, for CDS contracts on high yield 

(HY) reference entities, the required capital-at-risk is high for longer holding periods and under the 
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first regime. Finally, we find the level of capital-at-risk needed to cover credit risk associated with 

CDS contracts on HY firms to be at least twice the amount that is needed for CDS contracts on IG 

firms. 

The findings of this paper have implications for regulators and credit risk portfolio 

managers, who must take into account high and low volatility periods to determine the risk-based 

capital required. Insurance companies, banks and hedge funds may suffer losses when they 

purchase overpriced CDS or when they sell underpriced CDS. This work is therefore very 

important for credit derivatives valuation and for credit risk pricing, measurement and 

management.  
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